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The development of multi-model ensembles for reliable predictions of inter-annual climate
fluctuations and climate change, and their application to health, agronomy and water management,
are discussed.
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1. INTRODUCTION
In this paper, the reasons why climate is believed
predictable, even though the evolution of weather is
chaotic, are discussed. A pragmatic characterization of
predictability is outlined, and examples of realistic
climate prediction systems, based on multi-model
ensembles, are shown. Examples of the application of
climate prediction to crop yield and malaria incidence
forecasting are discussed.
2. WHY IS CLIMATE PREDICTABLE?
It is well known that weather is chaotic, and that,
because of this, detailed day-to-day weather forecasting
is effectively impossible more than a couple of weeks
ahead. So why is so much effort expended on the
problem of predicting climate? First, there is more to
climate than just weather. On time-scales of seasons
and longer, variability in the oceans can lead to
significant fluctuations in weather statistics. Examples
of climatic phenomena in which oceanic dynamics play
an essential role are El Niño, with predictability on
time-scales of seasons, and the thermohaline circula-
tion, with predictability on time-scales of decades. In
addition to this, of course, the increases in atmospheric
greenhouse gas concentrations are believed to be more
or less predictable many decades ahead, due to
anticipated anthropogenic emissions.

We can illustrate the way in which these low-
frequency effects influence the development of the
underlying chaotic atmospheric evolution, by consider-
ing a small modification
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to the Lorenz (1963) model, where f is considered to be
a forcing to the atmosphere which varies on time-scales
much longer than the characteristic time-scales
associated with the Lorenz equations. Figure 1 shows
tribution of 17 to a Discussion Meeting Issue ‘Food crops in
ing climate’.
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time-series of the x component of the Lorenz state
vector for different values of f. For each value of f
shown, the model is chaotic, i.e. sensitive to initial
conditions. However, it is clear that f has a predictable
effect on the probability that the state vector resides in
one of the Lorenz regimes.

In practice, we can think of f as representing some
slowly varying part of the climate system, such as El
Niño, the thermohaline circulation, or the effect of
anthropogenic greenhouse forcing. Figure 1 illustrates
the notion that the effect of these low-frequency effects
on the atmospheric probability density function can be
predictable.
3. A PRAGMATIC DEFINITION OF
PREDICTABILITY
What exactly do we mean by predictability? Consider
some meteorological variable, for sake of illustration,
summer-mean temperature in some part of the tropics.
The year-to-year variation of this variable can be
described in terms of a climatological probability
distribution, represented schematically as the solid
curve in figure 2a as a normal or Gaussian distribution.

Now suppose we have a forecast system that predicts
the probability distribution of summer-mean tempera-
ture for this part of the tropics, a season ahead. Such a
system is necessarily based on the ensemble forecast
methodology, discussed below. Suppose that such a
system predicts, for a particular summer, the dashed
curve in figure 2a. The two probability distributions are
clearly different, indicating unambiguous predictability
for this summer’s prediction: that the seasonal-mean
temperature will be above average.

What about the situation in figure 2b? Throughout
most of the temperature range, the difference between
the forecast probability distribution and the climatolo-
gical probability distribution is small. As such, we
might be inclined to say that in this situation,
predictability is rather small. But suppose we are
mainly interested in the prevalence of a certain
weather-sensitive disease, call it ‘X’, which only
becomes prevalent if the temperature exceeds some
threshold Tc, or suppose that some crop ‘Y’ fails if
temperature exceeds Tc. Then for these health and
agricultural applications, this particular forecast
q 2005 The Royal Society
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Figure 1. The impact of an ‘external forcing’ f, on the state vector of the Lorenz (1963) model, cf. equation (2.1). (a) fZ0,
(b) fZ2, (c) fZ3, (d ) fZ4. The forcing has a predictable effect on the probability distribution of the Lorenz state vector.
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probability distribution would imply very useful and
important predictability: that the probability of disease
X becoming prevalent or of crop Y failing, is predicted
to be very small in the coming season.

These two specific examples (X and Y) are
simplistic; however, the point is that assessment of
whether predictability exists or not is inherently linked
to the applications for which the seasonal forecasts are
being used. Indeed, this motivates a plausible definition
of predictability: a variable x is predictable if the
forecast probability distribution of x differs sufficiently
from the climatological probability distribution to
influence relevant decision makers.
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Figure 2. (a) The solid line is a schematic illustration of the
climatological probability of some climatic variable, such as
seasonal-mean surface temperature for some part of the
tropics. The dashed line is a schematic illustration of a
seasonal forecast probability distribution showing clear
predictability. (b) as (a) but for a forecast probability
distribution whose overall level of predictability is small.
However, for certain applications which require knowledge of
whether or not temperature exceeds some threshold, there
may be significant predictability.
4. ENSEMBLE WEATHER PREDICTION
As discussed above, atmospheric evolution is chaotic,
i.e. sensitive to initial-condition uncertainty. However,
with modern-day supercomputers, we can run weather
forecast models many times from very slightly different
initial conditions, consistent with the uncertainties—at
the European Centre for Medium-range Weather
Forecasts (ECMWF), the Wedium-range Forecast
model is run 52 times twice a day—to estimate the
effect of this initial-condition uncertainty. The resulting
forecasts can be combined to produce a forecast
probability distribution.

Figure 3 is an example of a 42 h ensemble forecast
for the infamous and highly damaging storm Lothar of
December 1999. ECMWFs main high-resolution
Phil. Trans. R. Soc. B (2005)
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Figure 4. The scientific basis for ensemble forecasting illustrated using the prototypical Lorenz (1963) model of low-order chaos,
showing that in a nonlinear system predictability is flow-dependent.
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Figure 5. (a) Seasonal forecast probability distributions of El Niño based on the ECMWFmodel within the DEMETER project;
bar and whiskers give tercile distributions and grey diamonds give ensemble mean. The solid dot gives the observed value, which
often lies outside the forecast. (b) As top but for the DEMETER multi-model ensemble. The validation now almost always lies
within the ensemble. The probabilistic skill of the DEMETER multi-model ensemble is greater than for the single-model
ensemble.
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Figure 7. Probability distributions of wheat yield for different countries (a) France, (b) Germany, (c) Denmark and (d ) Greece in
Europe, based on DEMETERmulti-model re-forecasts (from Canteloube & Terres 2005). The open dot denotes the ensemble
mean value, and the solid dot denotes crop yield when the crop model is forced with ERA-40 gridded analyses. The bars denote
the Eurostat yield.
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Figure 6. Forecast probability distributions (bar and whiskers showing terciles) of malaria prevalence over southern Africa,
based on the DEMETER multi-model ensemble system coupled to a malaria prediction model. The diamond denotes the
ensemble-mean value, and the solid dot denotes malaria prevalence when the malaria model is forced with ERA-40 gridded
analyses (so-called tier-2 validation; Morse et al. 2005).

Probabilistic prediction of climate T.N. Palmer and others 1995
deterministic forecast completely missed this storm. In

this particular case, the spread of the ECMWF

ensemble was enormous, indicating that the develop-

ment of the flow was highly unpredictable. However,
Phil. Trans. R. Soc. B (2005)
despite this unpredictability, the ensemble did indicate

a significant probability, or risk, of a severe weather

event. Of course, 42 h weather forecasts are not

normally this unpredictable.
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Figure 8. Probability of extremely warm JJA temperatures in 2081–2100 based on a multi-model multi-scenario ensemble,
assuming each member of the ensemble to be equally likely. An extremely warm JJA is one whose temperature lies in the 95th
percentile category according to twentieth century control simulations. Details to be found in Weisheimer & Palmer (to appear).
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The scientific basis for ensemble forecasting can be
demonstrated using equation (2.1). The evolution of
three different ensembles is shown in figure 4. Because
the underlying equations are nonlinear, the growth of
initial uncertainty is strongly dependent on the starting
conditions. The practical point of this is that the
predictability of forecasts is variable; we need ensem-
bles to tell us in advance how predictable the climate
system is.
5. CLIMATE PREDICTION ON SEASONAL
TIME-SCALES
Let us now return to the problem of climate prediction.
As discussed (see http://www.clivar.org), the physical
basis for seasonal climate prediction lies in components
of climate that vary slowly compared with individual
weather events—that is to say ocean and land surface
(including, cryospheric components). As is well known,
El Niño is the prototypical phenomenon with predict-
ability on the seasonal time-scale. Fully coupled ocean–
land–atmosphere models are required in order to
predict seasonal climate by dynamical means. Just as
in weather prediction, ensemble forecasts using these
Phil. Trans. R. Soc. B (2005)
coupled models give probabilistic risk forecasts of

climate events. However, for seasonal ensemble predic-

tion it is essential to take into account not only

uncertainty in the initial conditions, but also uncer-

tainty in the model equations themselves. Uncertainty

in model equations arises because the process of

parameterization, the way in which sub-gridscale

motions are represented in weather and climatemodels,

is not a precisely defined procedure (Palmer et al. 2005).
One way to represent model uncertainty is to

incorporate, within the ensemble, independently

derived models. The resulting ensemble prediction

system is known as a multi-model ensemble system (see

below). There are other ways to represent model

uncertainty, e.g. stochastic physics (see Buizza et al.
1999; Palmer 2001) and the perturbed-parameter

approach (see Murphy et al. 2004; Stainforth et al.
2005).

The skill and utility of multi-model ensemble

forecast systems has been explored in a recent

European Union project called DEMETER; Palmer

et al. 2004. (Demeter was the Greek Goddess of

Fertility. When her daughter Persephone was abducted

http://www.clivar.org
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into the underworld, Demeter cast a deep freeze on the
earth, so that no crops would grow. Eventually, Zeus
intervened and Persephone was allowed out for 9
months of the year. Demeter kept the freeze on the
Earth for the remaining 3 months. Without Demeter
we would not have seasons, and hence seasonal forecast
projects! More prosaically, DEMETER stands for
‘Development of a European Multi-Model Ensemble
System for Seasonal to Inter-annual Climate Predic-
tion’.) In this project, advantage was taken of one of the
real strengths of European climate research: the
existence of seven quasi-independent state-of-the-art
comprehensive global climate models developed at a
number of institutes around Europe.

Figure 5 gives an example of how the DEMETER
multi-model forecast system produces more reliable
seasonal forecasts than is possible using a single-
model ensemble system. Shown are 2–4 month
forecasts of El Niño sea surface temperature
anomalies over the period 1980–2001. The solid dot
shows the observed El Niño sea surface temperature
anomaly, the ‘bar and whiskers’ show the forecast
probability distribution of El Niño sea surface
temperature anomaly in terms of terciles. Forecasts
at the top of figure 5 are based on the ECMWF
model only. While there is clear skill, this single-
model ensemble system is not fully reliable, there are
many cases where the verification lies outside the
range of the ensemble. The bottom diagram is for the
full DEMETER multi-model ensemble system; now
the verification almost always lies with the range of
the ensemble. This is one example of many that
show conclusively that the DEMETER ensemble is
intrinsically more useful and more skilful than
forecasts from any one (e.g. national) model
(Hagedorn et al. 2004; Doblas-Reyes et al. 2005).

A key part of the DEMETER project was to
demonstrate value for applications in health and
agriculture. In order to study this quantitatively, a
system was developed using partners expert in down-
scaling, and partners expert in malaria prediction, on
the one hand, and crop modelling on the other.
Figure 6 is an example of the month 2–4 DEMETER
forecast probability distribution of malaria prevalence
for a grid point in southern Africa (Morse et al. 2005).
As with the El Niño sea surface temperature distri-
bution, terciles of the forecast probability distribution
are shown. There is some clear year-to-year variability,
and the ‘verification’ (here based on running the
malaria model using ERA-40 weather) lies within the
forecast ensemble.

Recently, the use of the DEMETER system for
malaria prediction for Botswana has been studied
(Thomson et al. in press). It is concluded that it is
now possible to realize the aspiration of the Abuja
Declaration of African Health ministers, to provide a
malaria early warning system ahead of the start of the
rainy seasons.

Figure 7 shows month 2–4 forecast probability
distributions from DEMETER, but here based on
wheat yield in tons per hectors over specific European
countries (Canteloube & Terres 2005; see also
Marletto et al. 2005). While only a limited number of
years have so far been studied, there is evidence of
Phil. Trans. R. Soc. B (2005)
useful predictability and the DEMETER forecasts have
proven more skilful than forecasts made using statisti-
cal empirical techniques by the European Commis-
sion’s own crop forecasters.

DEMETER data is also of value for crop yield
prediction in the tropics (groundnut yields in Western
India; Challinor et al. 2005). Also, in collaboration
with the Georgia Institute of Technology and the
Bangladesh Meteorological Institute, the skill of the
DEMETER forecasts coupled to hydrological models
for the Bangladesh drainage basins, are being used
to forecast probability distributions of flooding in
Bangladesh (Webster et al. 2005).

Scientists who wish to assess the extent to which
there is useful predictability for their part of the world
for particular applications of interest are strongly
encouraged to go to the DEMETER web site (http://
www.ecmwf.int/research/demeter). All of the
DEMETER data can be freely downloaded from this
web site, as can the ERA-40 data used for validations.
6. FORECASTING CLIMATE CHANGE
Multi-model ensemble forecasts have also been used to
make probabilistic climate change forecasts (Palmer &
Räisänen 2002). Such ensemble forecasts will play a
role in the forthcoming fourth assessment report of the
Intergovernmental Panel on Climate Change (IPCC:
http://www.ipcc.ch).

Amulti-modelmulti-scenario ensemble (basedon15
models and three scenarios) has been recently created
for the IPCC fourth assessment report (http://ipcc-wg1.
ucar.edu/meetings/CMSAW). Using this ensemble, we
show in figure 8 an analysis of the probability of
occurrence of an extremely warm June–August ( JJA)
temperature over Africa and Europe during the period
2081–2100. Here ‘extremely warm’ is defined as a
season-mean temperature whose probability of occur-
rence according to the twentieth century control
integrations of the multi-model ensemble is 5% or less.

Figure 8 shows a fairly heterogeneous picture in the
probability of extremely warm temperature between
2081 and 2100. Over parts of the west coast of
southern Africa, the probability of an extremely warm
boreal summer is predicted to increase from 5 to about
10%; that is such summers which occurred about once
every 20 years in the twentieth century, can be expected
to occur about once every 10 years. On the other hand,
there are regions (e.g. bordering the Gulf of Guinea
and the Mediterranean) where extremely warm boreal
summers are expected to occur with a probability of
more than 60%. In these regions, such (twentieth
century) extremes can be expected in at least two
seasons out of three. In general, the increase in the
probability of an extreme JJA arises both because of a
shift towards higher temperatures and a broadening of
the multi-model-based probability distribution. The
reliability of these results have been examined using the
bounding box diagnostic developed by Weisheimer
et al. (2005) to study the DEMETER seasonal climate
forecasts. Interestingly, those land areas with the
highest expected change in the occurrence of extreme
warm seasons are also most reliable. For further details,
see Weisheimer & Palmer (in press).

http://www.ecmwf.int/research/demeter
http://www.ecmwf.int/research/demeter
http://www.ipcc.ch
http://ipcc-wg1.ucar.edu/meetings/CMSAW
http://ipcc-wg1.ucar.edu/meetings/CMSAW
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Analysis of extremely wet and extremely dry season
is in progress using similar techniques and based on
this multi-model ensemble. Results will be reported in
due course.
7. CONCLUSIONS
In this paper, we have discussed the reasons for
predicting climate, and the use of multi-model
ensembles for making seasonal climate predictions
and predictions of climate change.

In this paper, we have not tried to apply non-
uniform weighting to the members of the ensemble
(e.g. Doblas-Reyes et al. 2005). In principle, non-
uniform weighing is appropriate when the members of
the ensemble have unequal skill or simulation capa-
bility. Similarly, we have not discussed alternate
methods for representing model uncertainty, e.g.
using perturbed parameter ensembles (Murphy et al.
2004; Stainforth et al. 2005) or stochastic physics
ensembles (Buizza et al. 1999; Palmer 2001). Different
techniques for representing model uncertainty are
compared in Palmer et al. (2005). It is one of the
objectives of the EU FP6 project ENSEMBLES to
inter-compare these methods through seasonal and
decadal-time-scale integrations.

Whatever the method used to represent model
uncertainty, the key point is that the climate forecast
community is now capable of producing ensemble
forecasts the output from which can be fed to
application models, in health, agriculture and hydrol-
ogy, thus producing useful forecast probability distri-
butions for application variables.
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